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Summary 

Problem definition 

Existing dynamic traffic assignment models become more and more advanced 
in terms of propagation, but in terms of route choice, many models are still 
pretty primitive. With the increase of research for route choice models, the 
question arises if it is possible to extend current propagation models by adding 
route choice to them. Questions included are which route choice models are 
good enough for application and how these models should be combined with 
the propagation model. 
 
Methodology 

In recent years, the research on route choice models and –more in general– 
discrete choice models from Random Utility Maximisation has increased 
significantly. Many research has been performed from a theoretical point of 
view. In this research the performance of several GEV based models is tested 
using a Monte Carlo (Probit) simulation technique. For this purpose a large 
scale network is used out of which 26 zones are selected for routeset 
generation, filtering and route choice calculation. 
 
Additional research is performed to determine how route choice models and 
propagation models have to be combined. A new flexible dynamic equilibrium is 
presented to replace two existing dynamic equilibria (Boston & DUE). This 
equilibrium is formulated to better approach real traveller behaviour. A 
prototype model is developed and tested on a relatively small network. 
 
Results and discussion 

There are significant relations between characteristics of routesets and 
performance of the tested route choice models. This implies that the question 
which route choice models should be applied depends largely on the type of 
routeset. In general the PCL model gives relatively good results while not much 
effort has to be put in calibration. 
 
The prototype model for interaction between route choice and propagation 
shows results matching expectations. Combining iterations using a method of 
successive averages leads to fast and stable convergence. If models get very 
stochastic, the ability to optimise route choice decreases.  
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Conclusion and recommendations 

It is possible to extend existing propagation models with route choice. The PCL 
route choice model is a good place to start, although also CNL, PSL and C-Logit 
give good results, depending on the characteristics of the routeset. If possible it 
is advised to determine which model to use before application. 
 
The new equilibrium method using some kind of forecasting is assumed to be 
very powerful. It gives more flexibility than current instantaneous and dynamic 
equilibria.  
 
Tests performed with the prototype are promising. However, additional 
research is needed to determine if the results presented in this report can be 
generalised to larger cases. Especially the applicability on large scale networks 
(with congestion) is advised to be investigated. For this purpose, the current 
prototype can be optimised to a more efficient test application. 
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Samenvatting 

Aanleiding en probleemstelling 

Bestaande dynamische toedelingsmodellen worden steeds geavanceerder op 
gebied van propagatie, maar zijn vaak nog erg beperkt in de routekeuze. De 
vraag die aan de basis van dit onderzoek ligt is hoe routekeuze op een juiste 
manier aan bestaande dynamische toedelingsmodellen kan worden 
toegevoegd. 
 
Methodiek 

Routekeuze wordt in de literatuur voorgesteld vanuit de Random Utility 
Maximisation Theory. De afgelopen jaren zijn verschillende modellen voor 
routekeuze ontwikkeld, maar vaak enkel van een theoretisch perspectief. In dit 
onderzoek zijn de modellen aan een test onderworpen door ze toe te passen op 
een grootschalig netwerk van Nederland. Voor 26 zones in dit netwerk zijn 
routesets gegenereerd. Routefracties zijn berekend via een Monte Carlo (Probit) 
simulatie waarop de routemodellen zijn gekalibreerd. Vervolgens zijn de 
modelresultaten voor routesets met specifieke eigenschappen vergeleken. 
 
Aanvullend is onderzocht hoe de routekeuzemodellen aan de propagatie-
modellen gekoppeld dienen te worden. Een nieuwe evenwichtsdefinitie is 
geformuleerd die een combinatie van een instantaan evenwicht en dynamisch 
evenwicht mogelijk maakt en daarmee beter aan kan sluiten op reizigersgedrag 
uit de praktijk. Hiervoor wordt een soort van voorspellingsalgoritme gebruikt. 
Deze methodiek is omgezet in een prototype en getest op een kleinschalig 
netwerk. 
 
Resultaten en discussie 

Er is een relatie tussen eigenschappen van een routeset en de nauwkeurigheid 
van de routefracties zoals uitgerekend door de keuzemodellen. Dit maakt dat 
verschillende keuzemodellen beter aansluiten op bepaalde situaties. In het 
algemeen geldt dat het PCL model het makkelijkste te kalibreren is en daarmee 
het meest eenvoudig toegepast kan worden. Daarbij geeft het voor een groot 
deel van de routesets goede resultaten. 
 
Het prototype van het model dat de interactie tussen routekeuze en propageren 
regelt, laat zien dat alle parameters van het model de verwachte resultaten 
opleveren. Een systematiek van opeenvolgende gemiddelden voor meerdere 
iteraties leidt tot snelle en effectieve convergentie. Hoe deterministischer een 
model is, hoe makkelijker convergentie wordt bereikt. 
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Conclusie en aanbevelingen 

Geconcludeerd wordt dat het goed mogelijk is om bestaande propagatie-
modellen te voorzien van routekeuze. Het PCL routekeuzemodel is een goed 
alternatief voor eenvoudige implementatie, maar ook CNL, PSL en C-Logit zijn 
goede alternatieven, afhankelijk van de karakteristieken van de routeset. Indien 
mogelijk wordt geadviseerd om het gebruik daarom af te stemmen op de 
routeset. 
 
De methodiek waarbij routekeuze plaatsvindt op basis van een soort 
voorspelling wordt als zeer waardevol beschouwd. Het biedt meer flexibiliteit 
dan de bestaande instantane en dynamische evenwichtsformulering.  
 
De tests die met het prototype model zijn uitgevoerd zijn veelbelovend. 
Desalniettemin is aanvullend onderzoek nodig om te bepalen in welke mate de 
huidige resultaten gegeneraliseerd kunnen worden. Vooral de toepasbaarheid 
op grootschalige netwerken, al dan niet met congestie, is een punt van 
onderzoek. Daartoe wordt aangeraden het prototype efficiënter te formuleren 
en toe te passen op realistische netwerken met een zekere graad van congestie.  
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1 Introduction 

For only a few people is transport an end in itself. Most need to travel to be able 
to perform a certain activity, e.g. work, education or shopping. Since activities 
are carried out at different locations, people tend to make trips between these 
locations. This results in mobility and has its effect on daily society life. This 
chapter gives an introduction to the study presented in this report on dynamic 
traffic assignment route choice modelling. Paragraph 1.1 gives a short 
introduction on the growing mobility that partly forms the research motive 
pointed out in paragraph 1.2. In paragraph 1.3 the research objective and 
questions are presented. Paragraphs 1.4 and 1.5 describe the context of the 
study and scope of research respectively. This chapter concludes in paragraph 
1.6 by giving an outline of the report contents. 
 

1.1 The need for transportation modelling 

For the Netherlands, the last decade has shown a significant increase in 
mobility. Prospects for 2020 show a further increase of approximately 20% 
compared to 2000. Especially the mileage for car-drivers will grow (Ministry of 
Transport and Public Works, 2004). Without investment in new roads, this will 
lead to more congestion. This growth of mobility places pressure on the quality 
of life and environment. The trend of increasing mobility is not limited to the 
Netherlands. In both developed and developing countries this phenomenon 
requires attention.  
 
Comprehensive policies are required to cope with the growth of mobility. 
Transport planning and traffic management are necessary to support policy 
development and evaluation. Traffic management particularly focuses on the 
interaction between travel supply and demand. Behavioural information of the 
traffic is monitored by the traffic manager who regulates and controls the 
traffic. This is like a ‘two-way interaction game’ (Bovy & Stern, 1990). 

Traffic behaviour 
Controls and 

regulations 

Monitoring 

Figure 1.1 A basic traffic management approach (after Bovy & Stern, 1990) 
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To improve policy making and policy evaluation transport models are used. 
These models can be used to determine the effects of traffic measures. Offline 
models are used to forecast traffic demand and flow patterns based on zonal 
data and empirical data like traffic counts. Online models use real-time data. 
For this research offline models are considered.  
 
A common modelling approach consists of the four steps of trip generation, trip 
distribution, modal split and traffic assignment. For the traffic manager, 
especially the assignment stage is interesting, because it supplies in estimation 
of the effects of (dynamic) traffic measures before they are applied in real-life. 
For a comprehensive overview of the traffic assignment problem and related 
issues, see Patriksson (1994). 
 

1.2 Research motive 

Dynamic Traffic Assignment (DTA) models can be used to estimate the network 
load over time based on dynamic travel demand. Since the research of Merchant 
and Nemhauser in the late 1970s - which may be considered as the basis for all 
dynamic traffic assignment models - DTA modelling has evolved many times 
(Bliemer, 2001). However, it is still considered as relatively undeveloped (Peeta 
& Ziliaskopoulos, 2001). 
 
DTA models contain two interdependent components: route choice and 
dynamic network loading. Route choice models determine the behaviour of 
flows in the network. Dynamic network loading (DNL) describes the flow 
propagation through the network. A distinction can be made for two types of 
DTA models.  
 
The first type uses one comprehensive framework in which route enumeration 
and flow propagation is performed merely analytical. Relatively easy link 
performance functions are used, e.g. linear link exit functions (Bliemer, 2001). 
This simplicity enables the model to use advanced existing mathematical 
techniques to solve the DTA problem. The realism of traffic propagation thereby 
is of secondary importance (Szeto, 2003). The benefit of this approach is that 
existence and uniqueness of a solution can be proven (Yperman, 2007). 
 
The second type of models are simulation based models. These models use 
iterative procedures to derive the dynamic flow pattern. The mathematical 
techniques used by this type of models are less analytically oriented compared 
to the ‘analytical’ type models. Link performance functions are less restricted 
and can take complex forms. The DNL (sub)model supports advanced, non-
linear fundamental diagrams and queue spillback models.  
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A problem with many of the existing DTA models is that they often focus on 
either route choice or dynamic network loading. Especially the models with 
advanced DNL (sub)models lack the implementation of route choice. However, 
DNL models recently received more attention, merely because of their improved 
ability of capturing flow dynamics (Bliemer, 2001).  
 
The presence of good DNL models raises the question whether such models 
could be extended to full DTA models. This requires solving the route choice 
problem and implementing the interaction between route choice and dynamic 
network loading. The literature does give theoretical information on the first 
subject, but practical information is not widely available. Further the interaction 
between route choice and dynamic network loading is a subject that deserves 
more attention. 

 

1.3 Objective and research questions 

The objective of this study is to contribute to transport modelling by presenting 
a framework that extends existing DNL models with route choice.  
 

“The aim of the study is to develop a route choice model as an extension for current 
macroscopic DNL models, taking into account the interdependence of route choice 
and network loading.” 

 
In order to support the accomplishment of the objective two research questions 
are formulated.  
1. What are the specifications of a route choice model as part of a dynamic 

traffic assignment model? 
2. How can the iterative characteristic between dynamic network loading and 

route choice be realised? 

1.4 Research context 

The study is undertaken at Omnitrans International in Deventer, The 
Netherlands. The DTA model MaDAM, based on the METANET DNL model was 
developed by Omnitrans in the 1990’s. This model is currently under 
redevelopment. One of the aims in the redevelopment process is to improve the 
process of route choice modelling. This study therefore refers to MaDAM 
occasionally. More information about the MaDAM model can be found in 
paragraph 2.4. 
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1.5  Scope of study 

Before exploring the contents of this report, it is important to note what is part 
of the research presented and what is not. 
 
Type of assignment 

The study is focussed on macroscopic dynamic traffic assignment. Occasionally 
there are some references to static assignment techniques. 
 
Level of detail 

The study is used for the development of a route choice model to be used in 
medium to large scale networks, comprising up to 4000 zones and 200.000 
links. When defining the route choice model and the interaction between route 
choice and network loading, this order of magnitude is considered, which 
means the level of detail is relatively limited. 
 
Departure time modelling 

Departure time modelling is not under investigation in this research.  
 
Modes and purposes 

Only one travel network is considered: the motorway network. The number of 
modes and purposes is limited to comply with the desired level of detail: The 
model abstracts to only 1 mode and different types of network users (and so 
purposes) are represented by user classes. 
 
Propagation modelling 

Although propagation modelling is an important component in DTA modelling, 
it is not under investigation in this report.  
 
Data use and calibration 

The aim of the study presented is to develop a general model for route choice in 
a dynamic traffic assignment context. Therefore, calibration and validation is 
not described in this report. 
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1.6 Report outline 

This research is structured as follows. Chapter 2 gives an introduction to traffic 
assignment; first explaining static assignment and then presenting the reasons 
for dynamic traffic assignment. 
 
In chapter 3 a conceptual framework is presented that contains all elements 
that are elaborated in the chapters 4-7. First chapter 4 discusses route choice 
and routesets from a theoretical perspective.  
 
In chapter 5 route choice is presented as a discrete choice problem. Random 
utility maximisation theory is used to express route choice models from both the 
Logit and Probit family. A central focus is on special route choice models 
developed in recent years. These models are analysed in chapter 6. A selection 
from a real network is used to simulate model performance and see how well 
the models perform. 
 
Chapter 7 focuses on the interaction between route choice and dynamic 
network loading. Solution algorithms are investigated and presented 
mathematically. Chapter 8 will test a new algorithm using a case study. 
 
Finally, in chapter 9 the findings from the previous chapters are summarised in 
the conclusions. Also an outline is given of possibilities for further research. 
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2 Traffic Assignment overview 

This chapter focuses on dynamic traffic assignment from both a theoretical and 
practical perspective.  
 

 In paragraph 2.1 traffic assignment will be introduced in general, followed by discovering different 

types of traffic assignment in paragraph 2.2. Paragraphs 2.3 and 2.4 focus on static and dynamic 

assignment respectively. The chapter ends with paragraph 2.5 on the MetaNET/MaDAM model. 

2.1 Introduction 

Traffic assignment is the fourth stage in the classic four-step transport planning 
approach. As described by Ortúzar and Willumsen (2001), the assignment 
model determines an optimal trade-off between supply and demand, based on 
some given decision rules. The decision rules include the route choice 
behaviour of the travellers in the network. In practice, it means all trips are 
assigned to the network resulting in a traffic flow pattern. 
 
Compared with the network’s infrastructure, the resulting flow pattern gives 
information about the performance of the network. For the traffic manager this 
is necessary information when determining effective management techniques. 
 

2.2 Types of traffic assignment 

Assignment models are subject to the assumed traveller behaviour and network 
performance. If the model takes into account delays due to travel demand, the 
model is capacity restrained. Travellers route choice depends on the costs of the 
available routes. If the travellers are assumed to have perfect knowledge of the 
network conditions, a full equilibrium is simulated. If perception differences are 
simulated, the assignment model yields a stochastic flow pattern. 
 
  Stochastic effects included? 

  No Yes 

No All-or-Nothing Pure stochastic Capacity restraint 
included? Yes Wardrop's Equilibrium Stochastic User Equilibrium 

Figure 2.1 Types of traffic assignment  

(after Ortúzar and Willumen, 2001) 

 
 



 

 Page 7 

2.3 Static traffic assignment 

2.3.1 Static equilibrium definitions 
Based on the classification scheme in figure 2.1 the following static equilibria 
are distinguished.  
 
Wardrop's First Principle (User optimum) 

The first principle states that under equilibrium conditions, no individual trip 
maker can reduce his path cost by switching routes. This means that all used 
routes between an origin and destination have equal impedances and all 
declined routes have larger impedances. This principle is also known as the 
User Optimum. 
 
Wardrop's Second Principle (System optimum) 

Wardrop’s second principle, also known as the System Optimum, defines a 
state in which the network total travel cost is minimised. This means no single 
traveller can change routes to reduce his costs without thereby increasing the 
travel costs of other travellers (Wardrop, 1952). 
 
Stochastic User Equilibrium 

Under equilibrium conditions, no individual trip maker believes he can reduce 
his path cost by switching routes.  
 

2.3.2 Static assignment algorithms 
 
Although other algorithms are possible (and gaining attention), widely used 
static assignment algorithms are based on repeated shortest path searches and 
dynamic network loading. The techniques differ in the way they assign the 
traffic to the network: incrementally, by convex combination or by using a line-
searching technique (Frank-Wolfe algorithm). If a solution flow pattern exists, 
such methods will converge to this solution

1.  
 
For a comprehensive exploration of (mathematical) assignment algorithms, see 
Sheffi (1985) and Patriksson (1994). 
 

2.3.3 Uniqueness of solution 
If an equilibrium flow pattern exists and is unique, this solution is by definition 
only unique in terms of link flows. Multiple route flow patterns may result in the 
same link flow pattern and therefore there is not by definition a unique route 
flow pattern that results in a equilibrium traffic situation. 

_____________________________ 
1
 Whether the equilibrium flow pattern is derived depends on the used stepsize. 
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2.3.4 Drawbacks of static assignment 
In the static case travel demand for a certain period is known (for instance a 
morning peak period). One single OD-matrix contains the trips, which are all 
assumed to start and end within this period.  
 
Some remarks must be made on static assignment. First, recalling from the 
previous paragraph an equilibrium solution – if one exists – exists only in terms 
of link flows and not on route level per se (although it is theoretically possible in 
some small networks). Secondly, for longer trips (most of) the static assignment 
models do not take into account that trips might not reach their destination 
within the modelled time period. This aspect has recently received attention in a 
paper by Clark et al. (2007). The largest drawback of static assignment models is 
that they do not take into account the traffic flow through the network over 
time.  

2.4 Dynamic traffic assignment 

DTA models overcome the limitations of static assignment models by using a 
dynamic network loading model. Such a model uses continuous or discretised2 
time to model traffic flow through the network. Compared to static assignment 
models, congestion effects are simulated far more realistic.  
 

Dynamic Network Loading model (propagation model) 
In dynamic assignment modelling, a propagation defines the interaction between 
traffic on the network, like headway interaction, speed-density relations and stop- 
and go actions. Several propagation models have been developed over time, varying 
from car-following theory to kinematic wave and gas flow theory. 

 
2.4.1 Application of assignment models 

In the past static assignment techniques have been used on a large scale. 
During the last decade a shift toward more use of dynamic models can be seen. 
There are two major causes for this trend. First, the demand from the market 
has changed. For a long period there was practically no need for dynamic 
assignment models, since static models gave (and still give) robust results for 
the purpose of transport planning. Over time the market (consultants and their 
clients) also wanted insight in travel times (and delays) and queue building. 
This required a model that took time dynamics into account. Secondly, the 
computational power needed for DTA models is huge and until the late 1990s 
required special computers. With the increasing possibilities of regular 
computer workstations the dynamic traffic assignment is gaining importance 
rapidly (Peeta & Ziliaskopoulos, 2001). 

_____________________________ 
2
 Discretised models use small time steps (e.g. one second). 
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2.5 The MetaNET/MaDAM model 

As described in paragraph 1.4 the study presented here is carried out at 
Omnitrans International (OTI). The DTA model MaDAM, based on the DNL 
model METANET, is developed at OTI. Because the findings of the presented 
study might be used in the process of redeveloping MaDAM, it is important to 
briefly describe the current MaDAM model. 
 

2.5.1 METANET 
The basis for MaDAM lies in the METANET model, developed by Messmer and 
Papageorgiou in the 1990’s. In METANET time and space are discretised. The 
network is represented by a directed graph, where links are singly directed and 
the geometrics for a link are assumed homogeneous. Nodes between the links 
are used as diverge or converge points or at locations in the network where the 
motorway characteristics change (e.g. number of lanes). A large restriction 
however is that only nodes of degrees 2 and 3 are possible, which makes it 
inefficient to model realistic networks (Van Berkum, 2007). 
 
For each link a fundamental diagram is assumed, based on the link parameters 
free flow speed, speed at capacity, jam density and saturated flow. To propagate 
traffic, the METANET model divides the links into segments of equal length. All 
flow variables are calculated for each segment, using the fundamental diagram 
and using traffic conservation equations to be realistic with the conditions on 
the segments upstream and downstream. 
 
Route choice behaviour is presented by defining splitting rates for cross- and 
diverge nodes (nodes with multiple exit links). Both the travel demand and the 
splitting rates (turn fractions) may change over time, as specified by the user. 
 

2.5.2 MaDAM 
There are three major differences between MaDAM and METANET, which makes 
them two different models. The first major improvement is the ability to use 
nodes of higher degrees in MaDAM. This makes it possible to model full 
intersections (i.e. with 4 entering and 4 exiting links).  
The second major change is the use of a different fundamental diagram 
compared to METANET. According to the developers of MaDAM the original 
fundamental diagram from Metanet gives unrealistic results when volume 
approaches capacity the speed drop is too large, while they believe in such 
situations still relatively high speeds can be reached. Therefore, the Van Aerde 
fundamental diagram is used, which addresses supplies in this concern.  
The third and last major difference between MaDAM and METANET is that 
MaDAM contains a special junction modelling module, which has the ability to 
calculate delays on intersections.  
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3 Conceptual framework 

The previous chapter has introduced the concept of dynamic traffic assignment. 
This chapter will present a conceptual framework and gives a short introduction 
to the chapters 4, 5, 6 and 7.  
 
The DTA framework has to be consistent with existing Dynamic Network 
Loading models, but add (or replace existing) route choice models. The 
framework contains a route choice module that is fully flexible with – and 
operates independently of the used DNL model for propagation.  
 

 Paragraph 3.1 starts with defining the variables used in the framework, followed by a short outline 

of the framework in paragraph 3.2. The model constraints are investigated in paragraph 3.3. The 

concepts of route choice and DNL-Route choice interaction are discussed in paragraphs 3.4 and 3.5. 

 

3.1 Variables 

The mathematical formulations of the framework use index characters to define 
to which elements data is related. The following indices are used. 
 

3.1.1 Location variables 
 
Origin (o) 

Zone in the network from where traffic departs. 
 
Destination (d) 

Zone in the network where a trip ends. 
 
Route (r) 

Series of links from an origin to a destination zone. 
 
Position (x) 

A position along a route is denoted by x . This location is route, departure 
interval and time dependent. 
 

3.1.2 Time variables 
 
General time (T, t) 

The framework uses multiple time dimensions. The total (continuous) 
modelling period is denoted by T . Index  denotes a moment within this 
period. This index is continuous or discrete, depending on the used dynamic 
network loading model. 

t
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Route choice interval (k) 

The total time is divided into several time windows. In each time window the 
route choice behaviour is equal i.e. all travellers are assumed homogeneous. 
The length of such a time interval is quite arbitrary. If many small time windows 
are used, the traveller behaviour tends toward a microscopic model (since only 
small fractions of vehicles are considered equally behaviouring). is used as 
additional index for . 

k
t

 
Forecasting horizon (λ) 

A forecasting horizon might be used (more info in paragraph 7.5), where λ  is 
used as additional index for t . 
 
Time aggregation (γ) 

Data is aggregated in equal time intervals, where the size of an interval is 
defined by the modeller. 
 

Time-location example 
rod
tk

x δ  defines the point on route r  from origin  to destination d , departing in route o
choice interval , k δ  time units after departure. If ∞=δ  this means the end of the route. 

 
 

3.1.3 Network variables 
 
Link (a) 

Element of the network at which time-dependent traffic conditions are stored. 
 
 

3.1.4 Traveller variables 
 
Individual (n) 

For theoretical modelling an individual traveller  is considered. n
 
User class (u) 

A group of travellers who are assumed homogeneous. User classes can be 
distinct on characteristics like vehicle type and traveller behaviour. 
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3.2 Framework outline 

The conceptual framework is depicted in figure A.1 on the page 67 (this figure 
can be folded out for viewing while reading). Based on previous steps in the 
transport model, travel demand is assumed to exist for each time period and 
user class. Travel cost functions are used to determine the routeset (generate 
and filter). The main part of the DTA model framework consists of loops in which 
route choice and dynamic network loading are iteratively optimised to derive 
the flow pattern meeting a set of constraints. 
 
Multiple user classes 

Dynamic traffic assignment models using a discrete choice model for stochastic 
route choice allow some variation among travellers, but the traveller population 
is still considered homogeneous. Bliemer (2001) and Rosa & Maher (1999) 
suggest to extend DTA models with the inclusion of multiple user classes to 
represent heterogeneous traveller characteristics and thereby increase model 
applicability and make them more realistic.  
 
In the presented framework multiple user classes are supported for all model 
elements except the dynamic network loading model. Depending on the DNL 
model used, user information might not be used during traffic propagation. The 
framework however is flexible and is still able to evaluate route choice for each 
user class after propagating. 

3.3 Constraints 

The dynamic network loading model used for reference in this study employs a 
route structure in which route choice is allowed only in the departure (origin) 
zone. Once traffic is assigned to a route, the flow on this route can not be 
(partly) reassigned to another route. 
 
Pipe concept 

The reference DNL model MaDAM/Streamline uses pipes for the flow propagation. Pipes are 

created along a route, without connectors and splitters between the entrance and exit (origin and 

destination). The pipes are comparable to waterpipes: if you put something in, it will eventually 

come out, depending on the flow speed inside the pipe. Each pipe is a layer ‘under’ the network, 

where each layer identifies a single route and can also related to a specific user class or vehicle 

type. 
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Flow in the pipe is dependent on the conditions at the links in the top layer, the actual network. 

Density is equal for all pipes under the same link, but speed and flow may differ since alternate 

fundamental diagrams may be used for each layer. For instance heavy freight trucks will have a 

lower maximum speed on the highway than regular cars. For each time step in the dynamic 

network loading process, the density on all links is updated based on the in- and outflow (for all 

pipes). 

3.4 Route choice concept 

The framework is developed for application on large scale networks. Path 
searching while running the model will dramatically reduce model performance 
and is considered unnecessary if an adequate routeset is known beforehand. 
Therefore the routesets are to be derived before running the actual model. 
Discrete choice modelling is used to calculate probabilities for the routes in the 
routesets. 
 

3.5 Interaction concept 

There is no interaction between route choice and dynamic network loading 
while propagating. Route choice fractions are calculated before the propagation 
starts and are evaluated after the simulation. Multiple iterations are used for the 
purpose of convergence (reaching equilibrium). More information on this 
subject is presented in chapter 7. 



 

 Page 14 

4 Theory on route choice and routesets 

This chapter describes the basic theories on routes. This includes both 
theoretical requirements on the knowledge of route choice as traveller 
behaviour and a global overview of routeset generation and filtering.  
 

 Paragraph 4.1 starts with exploring the characteristics of route choice. This is followed by a brief 

investigation of route choice factors in paragraph 4.2. Paragraph 4.3 is on theory of routeset 

generation, 4.4 on randomisation techniques and 4.5 on routeset filtering.  

4.1 Route choice basics 

Bovy and Stern (1990) have investigated wayfinding and factors of route choice 
thoroughly. One of the basic fundamentals they state is that route choice is 
individual behaviour. For a macroscopic model we therefore assume route 
choice of a group is the result of many individual choices. Such an approach 
requires we first understand individual route choice behaviour. The next step is 
to determine how the choice of many individuals can be represented by choices 
made by a population. 
 

4.1.1 Types of route choice 
Based on observations, three types of route choice are defined (Bovy & Stern, 
1990): 
• Simultaneous choice 
• Sequential choice 
• Hierarchical choice 
 
Before explaining what these types are, a definition is presented. 
 

Decision point 
A decision point is a node in a network where two routes of the set of alternatives for 
an origin and destination combinations split. The first decision point is the trip origin. 

 
Simultaneous choice 

The traveller makes a choice for a route before making the trip. The choice set 
contains routes between the origin and destination of the trip. 
 
Sequential choice 

While travelling a decision maker faces decision points. When arriving at such a 
point, the traveller evaluates his choice by reviewing all routes from the decision 
point to the destination. He follows the best route to the next decision point. 
The links between two decision points form a subroute. 
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Hierarchical choice 

The hierarchical choice is similar to the sequential choice except for the 
probabilities to choose an alternative. In the case of sequential decision making 
the choice of the next subroute is independent of previous choices, while in 
hierarchical decision making this probability is dependent. 
 
In practice all three types of route choice occur (Jansen & Den Adel, 1987; Stern 
& Leiser, 1988; Benshoof, 1970; all in Bovy & Stern, 1990). However, even in 
simultaneous route choice it is likely that travellers can be forced to change 
routes because the route they did choose is no longer available, for instance 
because an incident has blocked a tunnel. This is referred to as adaptive route 
choice. 
 

Adaptive route choice 
When the traveller decides to change his (initial) route choice while travelling, based 
on changing circumstances he encounters, this is called adaptive route choice. 

 
The introduction of vehicle navigation systems have lead to an increase in 
adaptive route choice in recent years. Especially devices with real-time traffic 
information are capable of giving optimal routes from the current position of 
the traveller to the trip destination. 
 

4.2 Route choice factors 

As pointed out before, each traveller is a decision maker that makes an 
individual choice. The choice for a route is made based on the evaluation of the 
alternatives the individual faces. These alternatives form the routeset. 
 

Routeset 
A routeset Sn is a set of alternative routes as observed by individual decision maker n.  

 
The choice from the alternatives in the routeset is made based on route choice 
factors. These factors might be traveller-, trip- and route-specific attributes. 
Traveller specific attributes include age, sex, income level. Trip-specific 
attributes may include the purpose and travel mode. Route-specific attributes 
include route length, travel speed and number of traffic lights. 
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Examples 

An ambulance driver will choose the alternative with the smallest and most reliable travel time 

and the least amount of speed bumps. A truck driver might be forced to use a specific route 

because his load contains specific materials that are only allowed on designated roads. And 

someone who travels to his work daily will probably always take the same route, independent of 

route characteristics, unless the route quality changes significantly. 

 
Previous research has shown that route-specific attributes are the most 
important (Bovy & Stern, 1990, pp. 65-68; Fiorenzo-Catalano, 2007, pp. 110-
112). An overview of route-specific choice factors for different traveller types as 
given by Fiorenzo-Catalano (2007) is summarized in table 1.1. Of course this list 
is incomplete. For more information see Bovy and Stern (1990, table 3.3, p. 68). 
 

 Traveller type 

Factor Road users PT Users Pedestrians Cyclists 

Access and Egress time     

Congestion delay     

Cost / Delay     

First leg's travel distance     

In-vehicle time     

Number of turns/curves     

Number of transfers     

Pollution     

Road quality/surface     

Safety     

Tolls     

Travel distance     

Travel time     

Waiting time at stop     

Waiting time for transfer     

Walking time for transfer     

Weather protection     

Table 4.1  Main route choice factors for travel modes 

(adapted from Fiorenzo-Catalano, 2007, p. 111) 
 

4.3 Routeset generation and filtering 

Because each traveller is a decision maker, the ideal way to model route choice 
would be to know the routeset for each traveller and further know how they 
evaluate the alternative routes in their set. This requires knowledge of the 
routeset of an individual. This section describes ways to define the routeset.  
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It is important to understand that the route choice process is implicit and 
travellers can only to some extent explain their choice. The process of routeset 
generation is even more implicit. This means that we have to use model 
techniques to define the route choice set. 
 
Fiorenzo-Catalano (2007) has develop a framework for the routeset generation 
process, including 4 basic steps in routeset generation: 
• Step 1: Search a best route according to certain conditions; 
• Step 2: Evaluate the route to a set of route criteria; 
• Step 3: Select or reject the generated route; 
• Step 4: Evaluate the resulting route set according to a set of criteria. 
 

4.3.1 Types of routeset generation 
In general there are three types of route generation: 
• Single objective function search 
• Multi-objective function search (Label search) 
• Derive from capacityconstrained traffic assignment 
 
The first and second approach use an objective function. 
  

Objective function 
The objective function is a function that represents the observed quality of a route by 
a decision maker. The function includes the attributes the traveller considers 
important (such as those described in table 4.1). The objective can be to minimise the 
function (e.g. the route length) or to maximise the function (e.g. route utility). 

 
The objective function is not limited to continuous values like link length and 
travel time, but can also be based on discrete values. For instance, a path search 
can be done to find the path with the smallest number of traffic lights.  
 

4.3.2 Single objective function search 
This generation type is based on a single, fixed objective function. The search 
for the shortest path in a network is an example of this type of routeset 
generation.  
 

4.3.3 Label search 
This type of routeset generation is based on multiple path searches, where the 
objective function is altered in each iteration. The weights for the specific 
attributes can be changed to let the objective function be more or less based on 
a specific attribute. A special variant is to use only one attribute in each 
iteration. 
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Example 

An example of label search could be making a routeset with the shortest path, the fastest route, 

the route with the least number of speed bumps or the route as suggested by traffic signs. 

 
Techniques for multiple routes from objective function(s) 

For both techniques based on an objective function multiple routes for each 
objective function can be found by applying Monte Carlo simulation, where in 
each draw the attribute values – and thereby the objective function – take 
different values for each link. This results in other ‘shortest paths’. An other 
technique is to eliminate one or more links in the path search process and 
thereby derive alternative ‘shortest paths’ which are added to the routeset. 
 

For more information on techniques for the generation of multiple routes from 
objective function(s) see Fiorenzo-Catalano (2007), page 161 and further. 

 
Previous applications 

Ben-Akiva et al. (1984) have proposed a labelling method using a large number 
of optimality criteria based on surveyed choice motivations. An optimal path is 
found for each of the criteria: shortest route, quickest route, best signposted 
route, scenic route, etc. Bekhor & Toledo (2005) state that six labels could cover 
about 90% of all travelled routes. Others suggest that approximately between 
60 and 80 percent of the travelled routes can be identified (Ortúzar & 
Willumsen, 2001, pp. 328). 
 

4.3.4 Derive routeset from capacity constraint traffic assignment 
With capacity constrained assignment multiple path searches are done with the 
same objective function. The value of the link attributes are influenced each 
iteration by the assigned traffic rather than randomised. In the end, the routeset 
contains paths found as a shortest path in all iterations. Using this method, the 
routeset is dependent on the used assignment algorithm and its parameters 
(e.g. the fractions in incremental assignment or the number of iterations when 
using volume averaging techniques). 
 
Example 

Consider a road network with travel approaching supply. A single objective function path search 

might result in the least travel time, but the first iteration is based on zero flow on the network. 

In the second iteration, all traffic is assumed to use this route, which will increase the travel time 

and possibly will make another route faster. After several iterations the traffic is spread over 

multiple routes. Together these routes form the routeset.\ 
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4.3.5 Shortest path search 
For the first and second type of routeset generation a shortest path search is 
used. This paragraph explains briefly what path search is and the elements of 
the basic algorithm. 
 

Shortest path search 
Shortest path searching is the process of finding the sequence of links in a weighted 
graph with minimal impedance.  

 
Path search algorithm 

There is a wide variety of shortest path algorithms available. However, the basis 
of all these methods is the tree-building algorithm of Dijkstra (1959). This 
efficient node-by-node algorithm is very effective. For transport planning 
however, the presence of forbidden turn movements on intersections can not be 
modelled by the algorithm. A link-by-link algorithm has to be used. 
 

4.4 Theory on randomisation 

To find routes that are suboptimal either the shortest path must be ignored or 
have a larger impedance or a suboptimal path has to be have a lower 
impedance. A known technique for the first approach is used in the Marple 
traffic model, where repeated shortest path searches are performed and the 
impedances of the links of the found are multiplied by a factor. A drawback of 
this approach is that new found paths are unlikely to (partially) overlap with 
already found paths and therefore might lead to a unrealistic routeset. 
 
Using randomisation techniques routesets can be generated that do not exhibit 
the drawback described above. Further they allow suboptimal paths to be found 
as optimal paths. 
 
Randomising the link attributes is based on the fact that the link attributes are 
perceived differently among travellers. Examples of such attributes are travel 
time and travel distance. In the routeset generation process this behaviour is 
simulated. 
 
General outline of Monte Carlo simulation 

The Monte Carlo simulation technique exists of many shortest path searches on 
a transformed version of the network. The transformed state of the network is 
the result of randomising the attributes for a subset of links before the search. 
This subset might be either one single link, the links in the current routeset or 
the complete network.  
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Link attribute values are randomised using random number generators on a 
computer. Scaling problems might occur when absolute random numbers are 
generated: there is a large difference between the random outcome of 2 time 
units when travel time is measured in minutes or in hours. Relative random 
numbers do not exhibit this problem. 
 
Distribution random function 

The literature is not specific on what set of parameters and what distribution is 
to be chosen for optimal routeset generation. The choice for a set of parameters 
is quite arbitrary, but since routeset generation is mostly followed by a filtering 
process, the final routeset can be derived in many ways. 
 
In this research the randomisation is assumed to be based on distribution of the 
link attributes, where each attribute might have a specific distribution. For 
many uncorrelated attributes the central limit theorem states that the link 
impedance is normally distributed. 
 
One problem arises when using the Normal distribution. In the process of path 
searching it is required that no cyclic paths are found, and therefore all link 
weights should have the same sign. Using a Normal distribution with mean 1  
(relative factor for link impedance) can however result in negative values. From 
the theory of attribute perception this is unlikely: a traveller might perceive an 
attribute value in a more positive way, but it is not likely to perceive this value 
having another sign.  
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Figure 4.1 Gamma distribution and Normal distribution for µ=1.  

 (Left figure σ2 = 0.1, Right figure σ2 = 1) 

 
A solution for this problem can be found by using the Gamma distribution. 
Given a specific parameter combination this distribution is almost equal to the 
Normal distribution, but without negative values. For increasing variances the 
Gamma distribution results in positive skew, see figure 4.1. 
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Accelerated approach 

The Accelerated Monte Carlo approach uses an initial low variance. When after 
some draws no new routes are found, the variance increases, leading to larger 
changes in the link impedances. The idea is that then routes are found further 
away from the shortest path. 
 

4.5 Routeset filtering 

Apart from the question of how routesets are generated, it is important to 
identify the specifications for adequate routes and routesets. Fiorenzo-Catalano 
(2007) presents a framework containing definitions of Dial (1971) and 
Hoogendoorn-Lanser (2005). This framework consists of requirements for 
single routes, comparing between routes and the total routeset and will be 
described briefly3.  
 
Requirements for single routes 

• Reasonable routes are a-cyclic. All links have positive impedance values 
(Acyclic criterion). 

• A reasonable route does not exhibit a detour from the shortest possible 
connection in terms of one or more measures such as distance or time 
between origin and destination larger than a maximum threshold α. 
(Detour criterion) 

• A reasonable route is constituted by a systematic sequence of functional 
link levels, avoiding route parts going from higher to lower level links and 
back. (Hierarchical quality criterion) 

 
Requirements for comparing alternative routes 

• The mutual overlap between two alternative routes is less than ∆ percent 
with respect to the shorter one of the two routes (Overlap criterion) 

• Any two routes of the choice set should be comparable in travel (dis)utility 
within a given threshold of θ percent with respect to the shorter one of the 
two routes (Comparability criterion) 

• The non-common parts of two partly overlapping routes should have a 
maximum detour not larger than a given maximum percentage ωmax of the 
minimum two parts (Detour-max criterion) 

• The non-common parts of two partly overlapping routes should have a 
minimum detour not smaller than a given minimum percentage ωmin of the 
minimum two parts (Detour-min criterion) 

_____________________________ 
3 For more information on calculation and examples of the criteria see   

Fiorenzo-Catalano (2007, pp. 138-155).
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Requirements for total route set 

• All reasonable routes that are likely to be used are part of the routeset 
(Reasonable criterion) 

• The size of the routeset is limited to a predefined number of S routes 
(Choice set size criterion) 

 
The above mentioned requirements can be mathematically tested on the 
generated routeset and unfeasible routes can be filtered out to obtain a final 
choice set. 
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5 Route choice as discrete choice problem 

In this chapter the route choice problem is described as a discrete choice 
problem. Several choice models are presented as possible methods to deal with 
the route choice problem. The models are described from the underlying theory 
of random utility maximisation. The descriptions are used to make a choice in 
the next chapter on what route choice model is preferred for application. 
 

 This chapter starts with an introduction in paragraph 5.1. Paragraph 5.2 gives an introduction to 

random utility maximisation theory. Basic discrete choice models are presented in 5.3. A problem 

arising when using these models is mentioned in 5.4 followed by exploring alternative discrete 

choice model formulations in paragraph 5.5. Finally, paragraph 5.6 presents a simulation 

technique. 

5.1 Introduction 

In this chapter the following conditions are considered. A predefined routeset is 
used, containing a limited set of alternatives for an OD-pair. The modeller can 
specify utility functions which may include both fixed characteristics of the 
network (e.g. speed bumps) and measures of dynamic network performance. 
The choice model is supposed to result in the probabilities of a population of 
travellers choosing the specified route from the routeset. 
 

5.2 Random Utility Maximisation theory 

Route choice can be seen as a discrete choice problem. Random Utility 
Maximisation theory assumes that each traveller  will try to maximise his 
utility when making this choice.  

n

 
Assume the routeset { }Jjn RRRRS ,...,,...,, 21=  consisting of J alternatives. 
Each alternative known by decision maker  all have a personal utility , so 
the decision maker will choose alternative  for which 

n njU
nj SR ∈

ijUU njni ≠∀> . 
 
For the researcher the utilities of the alternatives for an individual are unknown. 
However, to the researcher information is available of attributes that 
represent the alternative. Further attributes of the decision maker  are 
estimated, such as willingness to pay and sensitivity for route costs. The 
researcher defines the representative utility  as a function that combines 
these attributes: 

njx
ns

njV
),( nnjnj sxfV = . 
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Although it is theoretically possible that the researcher can define the exact 
utility, it is assumed that in general the representative utility approximates, but 
not equals the actual utility: njnj UV ≠ . Therefore njnjnj VU ε+= , where 

njε captures the attributes that influence the utility of the decision maker, but 
are unknown to the researcher (Train, 2002). Bierlaire (2005) defines njε as the 
capture of the maximum of many unobservable attributes and specification 
errors. Since { }nJn εε K1  are unknown, the set is assumed to be randomly 
distributed.  
 
The probability a decision maker chooses alternative can be rewritten in terms 
of the representative utility: 

i

)(iPn   )Prob( ijUU njni ≠∀>=  

)Prob( ijVV njnjnini ≠∀+>+= εε  

)Prob( ijVV njnininj ≠∀−<−= εε  (5.1) 

 
Given the cumulative distribution of nε , the probability becomes 
 

)(iPn    (5.2) εεεε
ε

dfijVV nnjnininj )()I(∫ ≠∀−<−=
 
The probability is a multidimensional integral over the distribution of nε . The 
definition of ( )nf ε  defines the choice model. Only for certain specifications of 

( )nf ε  a closed form solution of the multidimensional integral exists. 
 

5.3 The Probit and Logit model families 

In general, two families of choice models can be considered. Within the families 
variants may exist. The families are distinct since they have different base 
assumptions on the distribution of the unobserved portion of the utility 
function. 
 

5.3.1 Multinomial Logit 
The Logit model is derived under the assumption that niε is distributed IID 
Extreme Value Type 1 for all : i
 

( ) ( ) ( )ini
ini e

ni eef
ηεµηεµµε

−−−−−=  (5.3) 

 
where µ is a scale parameter and iη  is the location parameter (alternative 
specific). Using the above definition for the distribution of { }nJn εε K1 , the 
Multinomial Logit model can be derived (Ben-Akiva & Lerman, 1985, p. 106). 
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Multinomial Logit 
 
 (5.4) 

 

 
The probability function has a very convenient form, which makes it a popular 
model and easy to apply. However, the MNL model exhibits the IID-property: 
the unobserved factors are considered independent and identically distributed. 
This results in equal variances for all alternatives (Train, 2002). For application 
in route choice situations, this means the model does not take overlap and 
different variances among alternative routes into account. 
 

∑
∈

⋅

⋅
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ni

Cj

V

V

ni e
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5.3.2 Multinomial Probit 
The Probit model is derived under the assumption that niε is multivariate 
normally distributed with a vector of means 0  and a variance-covariance 
matrix. The probability for an alternative can be written in RUM terms as 

JJ ×

 

Multinomial Probit 
 
 (5.5) 

 

 
where ( )nεφ  is the joint normal density with zero mean and the defined 
variance-covariance matrix. No closed form solution exists for the Probit Model. 
The probabilities are evaluated numerically through simulation (an algorithm to 
perform such a simulation is described in paragraph 4.6). 
 

µ

µ

nnjnininjni )()I(∫ ≠∀−<−=P εεφεε
ε

dijVV

5.4 The overlap problem 

In route choice modelling overlap between routes defines a correlation between 
the error terms and thereby influences the choice probabilities. 
 

Overlap 
Links (and corresponding nodes) present in two routes result in overlap. The route 
utilities are positively correlated with the amount of overlap. 
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An example of the overlap problem is presented in (Sheffi, 1985, p. 294). For 
effective route choice modelling, overlap should explicitly be taken into account 
in order to prevent wrong outcomes (Frejinger & Bierlaire, 2007). In the Probit 
model the variance-covariance matrix is explicitly defined. But since this 
method requires simulation it is far slower in performance than the Multinomial 
Logit model.  
 

5.5 Alternative Logit formulations 

During the last two decades alternative Logit formulations have been developed 
that capture the correlation among alternatives. A classification can be made on 
how these models take correlation into account. 
 

5.5.1 Common links define nest structure 
 
The MNL model does not contain levels. An extension is given by the Nested 
Logit model, where alternatives are placed in nests. Each nest contains 
correlated alternatives. Alternatives among different nests are uncorrelated. The 
bottom level nest is equal to a standard MNL model. Theoretically it is possible 
to define a model with a large number of levels (where each nest might contain 
subnests). See figure 4.1 for an example of a nested model for mode choice. 
 

 
Figure 5.1  Example of nesting structure in mode choice 

(From: Ramming, 2002, p. 37) 

 

Cross-Nested Logit (CNL) 

In the Cross-Nested Logit, the Nested Logit model is extended by a correlation 
parameter which makes it possible for an alternative to belong to several nests 
with different degrees. The degree of correlation is defined by a parameter 

)10( ≤≤ mimi αα . This parameter was defined by Vovsha and Bekhor (1998) 
as the ratio of the common link length (or time) to the total in a route. For more 
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information see (Ramming, 2002, pp. 49-52). One important limitation pointed 
out by Fiorenzo-Catalano is that for realistic routes containing many links and 
larger routesets the nesting structure would be extra-ordinarily complex (2007, 
p. 126). 
 
The probability is defined by 
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with mµ  being the scaling parameter for the nest . m
 
General Nested Logit (GNL) 

The General Nested Logit is an extended formulation of the CNL model. GNL 
allows an extra dissimilarity parameter between nests. In practice this would 
mean that links in different nests would contribute on different scales to the 
representative utility, which contradicts the concept of representative utility. 
This concept requires all links to be comparable, i.e. to have equal scales. 
According to Fiorenzo-Catalano (2007, p. 126) this makes GNL unusable for 
route choice modelling, although there might be some exceptional cases.  
 
Paired Combinatorial Logit (PCL) 

The Paired Combinatorial Logit uses a correlation parameter for each combina-
tion of routes (e.g. i and j) in the routeset. This correlation parameter is given by  

10 ≤≤
⋅

= ij
ji

ij
ij dd

ηη
d

)

 (5.7) 

 

 
where  is the length (or time) of route and  is the length of the common 
links. 

id i ijd
( khη−1  is a measure of the correlation between the alternative routes. 

 
Because only each combination of alternatives has to be investigated, the 
structure of a PCL is less complex than the nested structure of CNL/GNL and 
thereby provide a computationally tractable mechanism for the route choice 
problem (Fiorenzo-Catalano, 2007, p. 126).  
 
The probability in the PCL model is defined by )()|( ijPijiPPi ⋅= where 
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with scale parameter µ  and S  defining the size of the choice set. 
 

5.5.2 Common links define disutility component 
 
The second type of alternative Logit formulations use a disutility component for 
accounting the overlap. The general idea behind this approach is that when 
making a choice between two partially overlapping routes, only the utility for 
the non-overlapping section is competitive and influences the decision. This 
approach is also known as penalising.  
 
C-Logit (CL) 

The C-Logit model penalises the alternative’s utility function by a Commonality 
Factor (CF). This factor is defined as 
 1
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γ

γ ∑
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i dd
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where 0γ  and 1γ  are positive parameters and have to be estimated (Fiorenzo-
Catalano, 2007, p. 127). The difference in approach compared to PCL is that the 
factor is measured compared to all other alternatives in the set, while PCL 
makes a comparison for each combination of two alternatives. After application, 
testing and calibration, Ramming concludes that C-Logit does not give useful 
results for his case study in Boston for which route choice data was available 
(Ramming, 2002, p. 190). 
 
Path Size Logit (PSL) 

The Path Size Logit model uses a penalty for the Utility function, similar to the 
C-Logit model. The model is based on the Path Size-parameter PS, which is 
defined as (Generalised Path Size Logit) 
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where iRa ∈ represents all links in route ,  is the length of link a,  
represents the length of route  and 

i al id
i ajδ  is a binary value that is equal to 1 if 

link  is present in alternative a j and otherwise. The parameter 0 γ needs to 
be estimated (Hoogendoorn-Lanser et al., 2004). 
 
The probability is defined by 

 ( )( )

)( )(∑
∈

+⋅=

SR

PSVi

j

jje
eP lnβµ

+⋅ PSV ii lnβµ

 (5.11) 

 

 
The Path Size Logit formulation is argued to sometimes give counterintuitive 
results (Bierlaire & Frejinger, 2005). 
 

5.6 Probit simulation technique 

5.6.1 Introduction 
Although the Probit model can not be applied directly, a simulation technique 
can be used to derive choice probabilities. The simulation algorithm is 
described by Sheffi (1985). The basic principle is to randomise link cost values 
and thereby randomise the route utilities taking the overlap directly into 
account. When this is done for a large number of draws a multi-dimensional 
integration is simulated. Route probabilities are calculated from the percentage 
of draws a route is simulated as ‘shortest path’. 
 

5.6.2 Algorithm 
For each OD-pair, consider a routeset { }Ji

OD RRRRS ,...,,...,, 21= . The links 
present in the routeset form the set { }AaL llll ,...,,...,, 21= . The objective 
function uses travel cost and the aim is to minimise the function value. X is 
initialised as a zero-vector with J elements. 
 
In each draw the link costs (or utilities) are randomised by applying 
 

( ) ( ) ( ) LCC aaaa ∈∀⋅+= lll 0* 1 ζ  (5.12) 

 
Because we are using the Probit model, we assume the random term aζ to be 
 

( ) aN aa ∀2,0~ σζ  
4
 (5.13) 

 

_____________________________ 
4
 In chapter 6 variance of routes is discussed. 
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After randomising the link travel cost, the link costs are summed over the links 
in a route to derive the random route travel cost, C*: 
 

( ) ( )∑
∈

∈∀=
ia R

OD
iai SRCRC

l

l**
 (5.14) 

 
Now route costs are known for all routes in the routeset (for this draw). One of 
those routes has the lowest cost. This increases the number of draws for which 
the alternative is preferred. 
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After all draws, the probabilities for each alternative are given by 
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6 Route choice model analysis 

The previous chapters have given an introduction to available route choice 
models. The purpose of this chapter is to analyse which route choice model is 
best to use for large scale application and therefore should be implemented in 
the framework. Thereto model performance is analysed using a case study.  
 

 This chapter starts with looking at relevant previous research in paragraph 6.1. In paragraph 6.2 

the approach used for the performance analysis is presented. A case study is presented in paragraph 

6.3. The analysis and test results can be found in paragraph 6.4 and discussed in paragraph 6.5. A 

remark on discrete choice models is made in paragraph 6.6. In paragraph 6.7 a proportionality 

factor is introduced, followed by a conclusion on which model is best to be used in paragraph 6.8. 

6.1 Previous research 

All of the models in the previous chapter are well described (from a theoretical 
point of view) in scientific literature. The amount of publications on practical 
application of the models by others than those who defined them is however 
very low. Only two publications are worth mentioning. Ramming (2002) gives a 
thorough investigation of the models. He used the Path Size Logit model to 
calibrate data from a case study in Boston.  Information on the quality of other 
models is not described. 
 
More recent Bliemer and Bovy presented a paper in which they compared 
various Logit models using the Probit model. Their focus was on the prediction 
quality of the route choice models in dependence of the size and composition of 
pre-defined routesets (Bliemer & Bovy, 2008). They used a Probit simulation 
technique to determine fictive route choice probabilities and calibrated the 
Logit models against those. Then they changed the size of the choice set 
(adding or subtracting routes) to see how well the calibrated models 
approached the new calculated Probit simulation route choice probabilities. 
They found that none of the investigated models (MNL, C-Logit, CNL, PSL, PSCL 
and PCL) are robust and all models lead to incorrect probabilities after 
changing the size of the choice set. In their experiment Bliemer and Bovy used a 
simple 1 origin, 1 destination network containing 12 links. 
 

6.2 Approach 

The research from Bliemer and Bovy might indicate that Logit-based route 
choice models, despite intensive calibration, still lack robustness. The 
sensitivity to the routeset can be a problem for application in large scale 
networks, because in such networks the routesets are likely to have different 
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sizes. Does this mean the route choice models are all useless or can we 
determine for what conditions the models give better or worse results? 
 
This chapter investigates model performance of 5 Logit-based route choice 
models (MNL, CNL, PCL, PSL and C-Logit). The approach used is quite similar to 
the one used by Bliemer and Bovy. The simulation technique described in 
paragraph 5.6 is performed with a sufficiently large number of draws to derive 
route choice probabilities. The Logit-based models are then calibrated (at 
network level) against those probabilities. At level of routesets (per OD-pair) the 
model performance is then analysed against properties of the routeset. 
 

6.2.1 Number of draws needed 
To make realistic comparison between model performance, the number of 
draws used in the Probit simulation has to be large enough. Otherwise the 
stochastic spread in the probabilities from the simulation is too large. 
Therefore, the number of draws needed in the Probit simulation technique has 
been investigated.  
 
Approach 

In total 1.000.000 draws have been made, split up in batches of 100 draws. For 
each batch the route probabilities are calculated. By averaging over batches the 
number of draws increases and the probabilities converge to the average of all 
draws. For example, for the sixth batch the probabilities for the first six batches 
are averaged (assumed as 1 batch of 600 draws). The difference between the 
simulated probability for this collection of batches and the overall average 
probability is a measure for the robustness. 
 
Mathematical formulation 

Let  denote the route choice probability for route i  from a certain routeset 
as simulated in batch b . The ‘correct’ probability is assumed to be the average 
of 1.000.000 draws, e.g. the average of the probabilities of all batches: 

b
iP
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The average pr ability of a collection of batches is given by 
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The relative difference between the probability in a collection of batches and the 
overall average is given by  
 

 

i

ii

P

bPP ~−
  (6.3) 

 

This indicator for robustness can be calculated for multiple routes in a set and 
for multiple routesets, resulting in an indicator for robustness of the Probit 
simulation technique for varying simulation sizes. 
 
Results 

As expected the number of draws affects the robustness of the Probit 
simulation. A larger number of draws leads to a smaller relative error in the 
probability calculation. Figure 6.1 shows the relative absolute error (average 
over multiple routesets) from expression 6.3 for multiple simulation sizes.  
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Figure 6.1 Robustness of Probit simulation 

 
Discussion 

It can be seen that up to 20,000 draws the robustness of the simulation 
increases significantly with the number of draws, while after 20,000 draws the 
increase in model performance is relatively small. 
 
Ideally the number of draws would have to be set to a very large number. 
However, the computational burden of the Probit simulation technique is 
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immense. Randomising a routeset consisting of 6 routes with 1000 draws takes 
between 0.5 and 1.5 seconds, depending on the number of links in the routeset. 
To compare: calculating probabilities for a routeset using a Logit-based model 
takes only a few microseconds. 
 
Based on the results shown in figure 6.1 the number of draws needed for the 
purpose of this research can be set to 20,000. The relative error per route is 
about 1%, which is assumed low enough to compare the outcome with Logit-
based models. 
 

6.2.2 Definition of model quality 
Per route the absolute difference between the probabilities from the simulation 
and Logit model is a measure for the quality of the model. By taking the square 
of this difference large errors are extra penalised. 
 
Mathematical formulation 

For a routeset  the probabilities for each route  are denoted by  
where  indicates the model/simulation. The performance of a model is given 
by 

S SRi ∈ S
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for performance quality at routeset level. For overall performance a summation 
is made over routesets: 
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6.3 Case study 

Description of network 

For the performance tests, a large scale Dutch main road network 
(Bereiksbaarheidkaart) is used. This network contains over 4000 zones and over 
200.000 links. For 26 zones spread over the network a routeset is created and 
filtered5. The zones are both larger cities and more rural residential areas, 
distributed all over the Netherlands. The idea behind this approach is that 
routes with different lengths in both urban (more detailed network) and rural 
areas are selected, resulting in different type of routesets (length of route, 
number of routes in set and different type of overlap). 
 

_____________________________ 
5
 The input parameters for the routeset generation and filtering are available in appendix B. 
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Routesets 

Free flow travel time has been used for the generation of the routesets. A filter is 
used to reduce the sets to a maximum of 6 different routes and a maximum 
overlap of 60 percent. Further small detours and infeasible long detours have 
been filtered out. The resulting routesets contain a total of 2148 routes (average 
number of routes per OD pair 3.18). 
 
Calibration 

It is important to realise that no realistic route choice is simulated, but only a 
comparison between Probit simulation and different Logit-based models. 
Therefore, calibration of the Logit models is not done against empirical data, 
but against a arbitrary value for the only parameter in the Probit model. 
 
The parameter for the Probit simulation is taken equal for all OD-pairs. For 
selections of OD-pairs, the parameters for the Logit model are calibrated. 
Initially all Logit models were calibrated using the same OD selection. If the 
validation showed unsuccessful calibration other (random) selections were 
generated (per Logit model), until all models resulted in the same error value or 
when no further enhancement of the model could be retrieved. 
 

6.4 Results 

6.4.1 Overall model performance 
Figure 6.2 gives a first glance at model performance. Each diagram shows the 
sum of residuals at OD-level. The colour-scale is equal for all models, which 
means the darker an OD-square, the worse the model performs for the routeset 
of this OD-pair. is noted at the top of each diagram. Based on this first 
investigation one could conclude that C-Logit and Cross-Nested Logit perform 
better than the other route choice models. Further MNL seems to give wrong 
results. However, as can be seen the model performance is different among OD-
pairs. This justifies a further analysis of model performance with discrimination 
to choice set properties. 

mQ
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Figure 6.2 Comparison of route choice models for total route choice set 
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6.4.2 Size of choice set 

A distinction of model performance can be made to the characteristics of the 
choice set. In this paragraph the size of the choice set is considered.  
 

Model Choice set 
size MNL CNL PCL PSL CL 

2 0.2774 0.1571 0.7076 0.3179 0.1204 

3 0.6698 0.4514 0.3078 0.5634 0.3099 

4 0.6317 0.4114 0.3518 0.5219 0.4289 

5 0.3216 0.2435 0.1870 0.2221 0.2627 

6 0.6403 0.4516 0.3980 0.3009 0.4474 

Total 2.5408 1.7150 1.9522 1.9261 1.5692 

Table 6.1 Model error by choice set size 

Lower values mean better performance. The best performing model for each choice set size is 

coloured. 

 
Table 6.1 shows the model error (sum of squares) for subsets of the zones used 
in the routeset generation. Each row in the table indicates a set of OD-pairs with 
a different number of alternative routes. Each column indicates a Logit variant 
model. Lower numbers mean better performance. Because the total error is 
different among the models, it is difficult to compare values between columns. 
The values can be compared between rows to see how well the same model 
performs on routesets with different sizes. 
 
Results indicate that model performance changes with choice set size. For 
instance, the PCL model has a large error when predicting route choice 
probabilities for sets with only 2 alternatives, however for sets of size 3, 4 and 5 
it performs best of all. The coloured cells indicate the best performing model 
per row. When all errors are scaled to a total error of 1.00 per model, this 
colouring holds and becomes even more significant. 

 
6.4.3 Amount of overlap 

Model performance is analysed with both average overlap and maximum 
overlap. For the case study routes have been filtered with more than 60 percent 
overlap. For overlap ranges between 0 and 60 percent the average

6 residual is 
calculated and plotted in figure 6.2. The figure shows that almost all of the OD-
pairs with more than 1 route exhibit at least 2 routes with an overlap of more 
than 40 percent. The average overlap has a wider distribution among the OD-
pairs. Especially this property has influence on the model performance. 
 

_____________________________ 
6
 Since the number of OD-pairs exhibiting a certain overlap range varies among overlap ranges, the average 

residual error has to be calculated to obtain comparable diagrams. 



 

 Page 38 

For routesets with small overlap ranges (between 0 and 0.2) MNL and PCL 
perform well, while the other models (especially PSL) give wrong results. For the 
middle range (20 to 40 percent overlap) both PCL and C-Logit perform well, 
although the relative difference with CNL is small. For routesets with high 
amounts of overlap (40 to 60 percent) PSL outperforms all other models. CNL 
and C-Logit are comparable. Remarkable is the worse performance of PCL for 
overlap categories between 52 and 60 percent, which indicates this model 
might not be useful for routesets in which the overlap among routes is very 
high. 
 

6.4.4 Length of route 
The third and final analysis considers the cost of a route. In general longer 
routes have larger costs. A short analysis is made of the model performance per 
cost category. As depicted in figure 6.3, there is no real difference in model 
performance for the most common route costs. For high, rare route costs, PSL 
seems to perform slightly better, but no significant difference can be measured. 
However, PSL seems more robust compared to the other models, since 
performance is not dropping when the model is applied to routesets with route 
costs different from those used in calibration. 
 

6.5 Discussion 

When comparing the probabilities of the Logit models with the Probit model 
outcomes, three properties of the routeset have been analysed. The size of the 
routeset gave a first indication on model performance. A second analysis 
showed an even stronger relationship between routeset properties and model 
performance: some models perform well when the overlap among routes is 
small, while others perform better with higher overlap ratios. A third analysis on 
the route cost did not show such a strong distinction. However, it showed that 
the PSL model is more robust than the other models. 
 
No single model performs best for all types of routesets. An ideal strategy would 
be to automatically determine the model to use for a specific routeset. If the 
application of a single model for all routesets is preferred, CNL, PCL or C-Logit 
is advised. PSL is not preferred for wide application, since the performance for 
short-length and barely overlapping routes is poor. 
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Figure 6.3 Model performance per overlap category 
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Figure 6.4 Model performance per route cost category

7

_____________________________ 
7
 There large error in the cost category 10,000 to 10,500 seems to be the result of a specific routeset in this 

category. Because of the low number of sets in the category, the outlier dominates the average error. 
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6.6 Shortcomings of discrete choice models 

The basic discrete choice model structure is not sufficiently qualified for large 
scale application. This is the result of two shortcomings. First, each of the route 
choice models described in chapter 5 requires at least one parameter to be 
estimated, the scaling parameter. Secondly the definition of variance is required 
to be more consistent with traveller behaviour.  
 

6.6.1 Scaling 
As shown in chapter 5, all discrete choice models use a scale parameter µ . The 
t eoretical asis for the use of this parameter comes from the formulation of h b
{ }njn εε K1 . Since the unobserved components are distributed Extreme Value 
type 1, the default variance of a random value niε  equals . This variance has 
to relate to the value of utility and represents the behaviour of travellers to 
choose a route other than the utility maximising route. 

6/2π

 
Depending on the scale of utility, the ratio  to utility can be either small, 
reasonable or large, with results varying respectively from choosing the optimal 
route only, choosing between reasonable routes and ignoring the utility values/ 
choose randomly.  

22 6/ µπ

Since utility can be measured in any dimension, a correction has to be applied 
to rescale the utilities to match the variance of the unobserved terms.  
 
The purpose of rescaling can be illustrated with the following example. 

Consider a simple network with three centroids (A,B and C). There are in total 4 routes, all 

originating from centroid A. Two routes end in centroid B and have respective travel times of 5 

and 10 minutes. The two other routes end in centroid C and have travel times of 50 and 55 

minutes respectively. Lets consider travel time as only component of the disutility-function. Now, 

without rescaling, the probabilities will be equal for both routesets, since in both cases the 

absolute difference in utility equals 5. However, for destination B the second route takes double 

travel time relative to the first, while for destination C the additional travel time of the slower 

route is only 10 percent of the travel time of the fastest route.  

 
 
 
 
 
 

 
Figure 6.5 Example with travel times for two different routesets indicating need for scaling 
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In the ideal case, each routeset has an individual scaling parameter, calibrated 
from empirical route choice data. However, for large scale application this is 
very costly and practically undoable. A practical workaround would be to use a 
limited amount of representative estimates as scale parameter for routesets 
with similar characteristics. From a behavioural perspective another approach 
can be derived. The next paragraph will focus on this. 
 

6.6.2 Variance 
Apart from the need for different relative variance scales for different routesets, 
an additional problem exists. The basic Logit formulation assumes all routes in 
a set to have equal variance. However, from behaviour, it can be argued that 
utility might be perceived differently among routes in the same routeset. 
 
Following Daganzo & Sheffi (1977), (co)variances are assumed to increase with 
(common) route lengths. Or, more generally, the variance of route costs is 
positively related to the route cost itself. The following model is mentioned in 
the literature (Bovy, 1990).  
 

( )m
RR ηθσ ⋅=2

 (6.5)  

 

where θ  and m  are positive constants and Rη  denotes the cost of route R.  
 
Possible values of m  include ½, 1 and 2. As stated in Bovy (1990, pp.74-75), 
only for 1=m  the variance at route level is consistent with the variances at link 
level: a summation of the variances for links in the route equals the variance of 
the route. However, this directly implies impedances of sequential links to be 
fully independent. For application this is an advantage, because cross-
correlation does not have to be considered.  
 
Effect of 1=m  on network loading 

From behaviour one could argue that travellers generally do not perceive utility 
at single link level, but for series of links in a route (a subroute). An advanced 
version of the model could include an intelligent algorithm that identifies 
subroutes and base route choice on those subroutes. For now, 1=m  is 
considered good enough for the purpose of this research. 
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6.7 Variance scaling with a proportionality factor 

The variance at route level of the MNL model is by definition  
 

2

2
2

6µ
πσ =R  (6.6) 

 
Since the variance to mean ratio holds at both link and route level, the route 
variance can be replaced which leads to 
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hence 
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2

. (6.8) 

 
For application µ  has to be constant in a routeset. For routesets containing 
more than one route, µ  is based on the minimal route cost. 
 
In this form a direct relationship can be seen between the scaling parameter µ  
and the travel cost. The only unknown parameter is a proportionality factor θ . 
Instead of calibrating each routeset, now the proportionality factor has to be 
calibrated. At first glance this might not seem to be an improvement. However, 
since θ  is derived from travel cost variance the parameter can be linked to user 
classes, trip characteristics and link type. Further, the proportionality factor can 
be influenced in the model based on the level of information of travellers. 
 
This new approach is considered significantly more flexible for application and 
easier to apply to characteristics of model elements (network links, user classes, 
dynamic measures, etc.). However, additional research is needed to see to what 
extent this new method can be implemented for large scale modelling and to 
what extent it performs better than a scale parameter for each routeset. 
Elements that should be covered in that research are how multiple 
proportionality factors can be used to determine the scale parameter for one 
routeset.  
 

6.8 Conclusion 

The purpose of this chapter was to analyse which route choice model is best to 
use for large scale application and therefore should be implemented in the 
framework. A case study on a real network has shown that although calibration 
at individual route sets is needed, use of route choice models calibrated for a 
large collection of routesets does not lead to very bad results. Especially when 
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characteristics of choice sets are taken into consideration. It was shown that 
size of routeset, amount of overlap and order of magnitude are all affecting the 
performance of each of the route choice models. When one model has to be 
chosen, it should be PCL. Although not the best model overall, this model is 
easy to estimate (only 1 parameter) and gives adequate results for most 
situations. 
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7 Dynamic network loading with route choice 

The previous chapters have focussed on some of the individual elements in the 
framework. This chapter elaborates on the theory behind the interaction 
between DNL and route choice. Further it determines what type of interaction 
fits best for large scale application. 
 

 First, paragraph 7.1 describes the interaction between route choice and dynamic network loading 

roughly. Dynamic equilibria are investigated in paragraph 7.2, followed by elaborating on the 

assignment algorithms in paragraphs 7.3 and 7.4. A new approach is presented in paragraph 7.5. 

The corresponding mathematical model is described in paragraph 7.6 and the solution scheme is 

presented in paragraph 7.8.  

7.1 General concept of network loading and route choice 

A numerical approach is used to make the framework fully flexible to function 
with any dynamic network loading model. This approach is iterative and 
requires multiple assignments with alternate inflow patterns before equilibrium 
is reached. These inflow patterns are derived from judging the outcome of 
previous iterations (for the first iteration other methods are needed). 
 
The utility functions used for the choice modelling are evaluated after each 
iteration. For static assignment the function values are fixed. For dynamic 
assignment however, the function values are dynamic if they include dynamic 
elements such as travel time. More specific, the function value is a path integral 
of the function elements. Evaluated utility functions are used for the route 
choice model. Iterations are needed until the inflow pattern reaches a stable 
state. 
 

7.2 Dynamic equilibrium definitions 

In paragraph 2.3 the use of equilibria was introduced for traffic modelling in 
general. This paragraph focuses on dynamic equilibria. 
 

7.2.1 Boston Traffic Equilibrium 
The Boston traffic equilibrium is a dynamic generalisation of Wardrop’s user 
equilibrium. It is based on the assumption that travellers try to optimize their 
routes based on network conditions at their time of departure. A flow pattern is 
said to be a Boston equilibrium when for each instant in time, for each OD-pair, 
the flow unit costs on utilised paths are equal to the minimum instantaneous 
unit path cost (Friesz et al., 1993). This equilibrium is also known as the dynamic 
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user optimal assignment (Ran et al., 1993, Kuwahara & Akamatsu, 2001) and 
reactive/naïve route choice equilibrium (Han, 2000). 
 

7.2.2 Simultaneous Route-Departure Equilibrium 
When travellers for each origin-destination pair have equal travel cost 
(including time penalties for early or late arrival) regardless of route choice, the 
flow pattern is said to be a simultaneous route-departure equilibrium (Friesz et 

al., 1993).8

 
7.2.3 Dynamic User Equilibrium 

At equilibrium, for each origin-destination pair and for each departure time 
instant, the actual flow costs from time of departure to time of arrival on utilised 
paths are identical and equal to the minimum unit path costs which can be 
realised from among all route choice decisions (Bliemer, 2001). This definition 
is similar to the previous definition (7.2.2) except the left-out of departure time 
choice and is also known as predictive and realistic route choice (Han, 2000). 
 

7.2.4 Deterministic versus stochastic equilibria 
Each of the described equilibria can be deterministic or stochastic. Equal to the 
static case, a deterministic equilibrium is based on the assumption that all 
network users have perfect information of network conditions and determine 
their routes without errors. Stochastic models relax this assumption and assume 
that travellers will not make perfect decisions due to perception errors or based 
on attributes that are not part of the objective function the modeller uses. 
 
When a discrete choice model is used, stochastic effects are introduced 
automatically (since the choice model contains unobserved/error terms). The 
variance of route costs, in the model influenced by the scaling factor µ , 
determines how well the stochastic equilibrium approaches the deterministic 
equilibrium. 
 

_____________________________ 
8
 It should be noted that departure time choice is beyond the scope of this research 



 

 Page 47 

7.3 Characteristics of algorithms 

Models that combine route choice and dynamic network loading have two main 
characteristics that identify the model: the type of equilibrium aimed for and 
the complexity of the dynamic network loading model. The functional algorithm 
has two characteristics that are derived from the model configuration: the 
number of runs and the run direction. All of these items will be briefly discussed 
below. 
 

7.3.1 Equilibrium definition 
The equilibrium definition used in the algorithm determines for a large part the 
two characteristics just mentioned. Models based on instantaneous travel cost 
do not need to re-evaluate route choice based on actual travel costs. Such 
models therefore can be single-directed, single-run methods. Models based on 
actual travel cost need multiple runs. 

 
7.3.2 Complexity of the dynamic network loading model 

 
Analytical formulation 

When the dynamic network loading model uses simple equations, it is possible 
to present the assignment problem as an analytical problem. Then existing 
mathematical methods can be applied to derive equilibrium flow patterns. 
 
Four mathematical formulations are known: the non-linear programming 
problem, the optimal control problem, the variational inequality problem and 
the complementarity problem. For a chronological overview see table 2.1 in 
(Bliemer, 2001, p. 16). As reported by Bliemer, there is a tendency to variational 
inequality formulations.  
 
Iterative formulation 

For models with more complex propagation functions, the mathematical 
formulation of the model becomes so complex, that it is not directly solvable. 
Instead, an iterative approach is needed. This means that at least multiple runs 
or multiple directions are used to derive the flow pattern. 
 

7.3.3 Number of runs 
A run is defined as running the model for the full simulation time. Algorithms 
can be single-run methods and multi-run methods. Multiple runs can be used 
for the purpose of iterating: using data from the previous run to enhance the 
model result. Another reason can be to have multiple runs, with different 
purposes for each run. 
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7.3.4 Run direction 
Apart from the number of runs, models can be single-directed and multi-
directed. In multi-directed models the model can go back in time, for example 
when a grid lock is found. Then the model can change strategy and run 
clockwise again. 
 

7.3.5 Convergence to equilibrium 
Due to the complexity of the dynamic network loading model and the route 
choice application, it is not guaranteed that an equilibrium can always be found 
using iterative methods. It is important to find a good start position from where 
the equilibrium is searched.  
 
The main difficulty is the time aspect in the propagation: when in one 
run/iteration a ‘wrong’ decision is made, this must be corrected in later 
iterations. Depending on the specification of the model, this might not always 
be possible. Heuristic methods that are able to go back in time decrease the 
chance of definitely going a wrong way, because they evaluate the decisions 
while applying them. 
 

7.4 Existing algorithms 

Several existing dynamic traffic assignment algorithms have been described by 
(SWOV, 2003). Four main types of dynamic algorithms are distinguished: 
• Multiple assignment algorithm 
• Time dependent Frank Wolfe algorithm 
• Subpopulation feedback assignment 
• Individual feedback assignment  
 
The last method is only usable for microscopic models. The applicability of the 
other methods is briefly discussed below. 
 
Multiple assignment method 

The simulation tools INTEGRATION and CONTRAM both use a two-phase model. 
First a pre-run is performed based on instantaneous network condition (i.e. no 
forecasting). The second phase iterates using the conditions from the previous 
iteration to redefine the spread of traffic over the routes. 
 
This method is successful, but requires multiple iterations to converge. It is 
possible this method leads to oscillating. For large scale models this method 
might be sub-optimal. 
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Dynamic Frank Wolfe assignment 

The Frank Wolfe algorithm, known from static assignment, can be ‘dynamised’. 
Assignment is performed for many small time slices. The method uses 
iterations, where each iteration is used to perform a shortest path search. When 
new routes are found the routeset is expanded. The method uses successive 
averages (or – if possible – a line search technique) to combine multiple 
iterations and derive probabilities. This approach does not support the use of a 
route choice model and is therefore unsuitable for the purpose of this research. 
 
Subpopulation Feedback Assignment 

The mechanism of Subpopulation Feedback Assignment (SFA) updates the 
route choice of only a part of the population each iteration. Thereby it prevents 
oscillating effects. Multiple iterations are required to get the same effect as the 
FW-method. However, SFA is more elegant. In early versions of the micro-
simulation tool INTEGRATION this method was used by default. 
 

7.5 The dynamic forecasting approach 

7.5.1 Introduction 
In paragraphs 7.2 and 7.3 the concept of realistic and naïve route choice was 
discussed. Apart from the stochastic character of a discrete route choice model, 
there is reason to doubt both realistic and naïve route choice. 
 
Firstly, there are situations in which a full dynamic user equilibrium is 
unrealistic. For instance, during off peak hours more irregular trips are made, 
for which drivers have no idea on future network conditions. Another example 
include situations in which special dynamic traffic management measures are 
taken during the trip. From a behavioural point of view: people can not know 
that these measures are applied when they plan their trip, so the model should 
not take these measures into account when determining the optimal flow 
pattern. 
 
Complementary, the opposite method using instantaneous route choice, is 
considered false too. It is highly unrealistic to assume that travellers have no 
single idea on future network conditions, while their knowledge on current 
conditions is assumed perfect. Travellers always have some amount of 
information on the network at the moment of their departure. Based on their 
experience and network knowledge they can – up to a certain degree – estimate 
the short term future network conditions. Of course this degree vary among 
drivers. 
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The literature does not present a way to model this intermediate travel 
behaviour. Only the full DUE and Boston equilibrium are mentioned. This 
paragraph will elaborate on a new approach which makes it able to model 
travellers that behave with varying forecasting knowledge, fully compatible with 
the two mentioned equilibria. 
 

7.5.2 Definition of equilibrium 
An intermediate equilibrium is derived from the behavioural theory that 
travellers choose a route based on their expectations of future network 
conditions. Future network conditions can be estimated only limitedly. Route 
choice therefore depends on a dynamic estimation of travel cost for a part of the 
trip and a instantaneous estimation of travel cost for the rest of the trip. 
 

Definition 
The traffic is said to be in n equilibrium state when travellers on a specific OD-
relation have equal total travel costs, where travel costs consist of path integral costs 
from departure to some point along a route and instantaneous travel costs for the 
part of the route from this point to the destination. The intermediate point is defined 
by the extent to which a traveller can predict future network conditions. This point 
can vary with user class. 

 

7.6 Mathematical formulation 

In the following the travel costs exist for discrete time and discrete space. Costs 
are denoted by  where txc , x  defines space and  defines time. Note that t x  
and t  are directly related by the route and propagation.  
 
Route costs are denoted by  for travellers using route )(kcrod r  departing from 
origin  to destination d  during time interval . o k λ  defines the horizon for 
which a traveller can predict network performance.  
 
Route costs are calculated as follows. 
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Alternatively this can be formulated as 
 

∑ ∑
+

+

∞

=
)(

(~

)(

)(
,~)(

λ

λ
λ

k
rod

k
rod

k
rod

k

k

tx

xx

tx

t
tx

rod ckc
= +=

+
) ~

)~(,~
rodt xx

xtxc  (7.1b) 

 

 

 A   B 
 
Where  
A =  Actual travel costs (path integral) for part of route travelled from origin up 

to the time horizon. 
B =  Expected travel costs (instantaneous) for rest part of route, based on 

network conditions at time horizon. 
 
Minimum total travel cost at OD-level is denoted by . )(kodπ
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Deterministically, the network is said to be in an equilibrium state if 

 

[ ] kCrdokkckf ododrodrod ,,,)()(0)( ∈∀=⇒> π  (7.3a) 

 

and 
 

[ ] kCrdokkckf ododrodrod ,,,)()(0)( ∈∀>⇒= π  (7.3b) 

 

where  denotes the flow on route )(kf rod r  from origin o  to destination d  
departing at time instant . k
 
Note that for stochastic route choice models this state can only be approached 
up to a certain degree. 
 

7.7 Solution scheme 

7.7.1 General outline 
A double iterative approach is used to derive the equilibrium flow pattern. 
Figure 7.1 schematically shows this approach. The example figure considers a 
total simulation period of 90 minutes. Intervals span 10 minutes each. Route 
choice is constant for travellers for a specific OD-pair departing during the same 
interval, but might differ among intervals. Each interval therefore has a specific 
set of route choice probabilities for all routes. 
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Figure 7.1 Outline of iterative process to solve assignment problem with forecasting 

 
The model uses intermediate points (thick black bar; at the beginning of new 
intervals) for which traffic in the network is stored. For the travellers entering 
the network in the upcoming interval flows are calculated based on ‘expected’ 
travel conditions. Flows are added to the network and the DNL model is ran for 
the period up to the horizon (red bar; in the example of figure 7.1 assumed to be 
30 minutes). After the time horizon minutes the route fractions are recalculated 
based on the actual network conditions. This process is repeated several times 
(orange arrows) until the route fractions converge. Then the last fractions are 
used to model up to the start of the next interval (blue line) where the process 
starts again (green arrow). 
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7.7.2 Main loop description 
The central element is the dynamic network loading model. Traffic flows 
through the network using the MaDAM propagation model. At the beginning of 
each route choice interval  the route choice model is called to calculate the 
route choice probabilities, which are multiplied by the travel demand to 
determine inflow. 

k

 
First, the costs from the previous run (or initial costs) are used to determine a 
new set of probabilities, only related to the current iteration and departure 
interval. 
 

( ) ( ) kdorikcfiP rodod
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Then the probabilities are weighted with the probabilities of the previous 
iteration. 
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Finally, the flow can be calculated using 
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The weighting factor 10 ≤≤ iα is unknown. Optimal values for iα  are 
unknown, so iα  is to be estimated. One common approach would be to use 
successive averages, where iα  is defined by 
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Stop criterion 

A duality gap is used to check convergence of the assignment. It is defined at 
time instant level by 
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For non-equilibrium results  will be a positive number indicating the 
assignment error. In the equilibrium state, all used routes costs are equal to the 
minimal route costs, so the nominator will equal zero  and therefore 

will be zero.  
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DG is calculated after each iteration. Reaching a full equilibrium state is not 
always possible. Therefore, convergence of  is used as a stop criterion. The 
algorithm stops if a sequence of iterations result in (approximately) equal 
values of  (e.g. 3 successive iterations). 

DG

DG
 

7.7.3 Inner loop description 
The orange loop from figure 7.1 is referred to as the ‘inner loop’. This paragraph 
gives a short outline of this model element. 
 
Idea 

The idea behind the inner loop is to react better on traffic conditions occurring 
in the near future. Traffic departing at (for a certain time instant ) make 
route choice decisions only based on travel costs during  and . In case the 
horizon is small relative to the total trip distance, it could be more effective to 
use additional simulations for short term predictions, with the intention to 
reduce the number of full simulations and thereby reduce model run time. 

0
kt k

0
kt

λ
kt

 
Approach 

The main loop calls the route choice model at the start of every new instant . 
The route choice model then stores traffic conditions for , calculates 
probabilities based on the previous iteration (similar to the way it is done in the 
main loop). Then traffic is loaded to the network and the propagation continues 
to , however, with a propagation model that not necessarily has to be the 
same as the model used for propagation in the main loop. For instance, a large 
time step can be used or even a completely different propagation model. 

k
0
kt

λ
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Stop criterion 

At  the inflow is evaluated using a time instant duality gap  λ
kt )(kf rod )(kDG
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Comparable to the main loop is checked for convergence. If is 
decreasing, the inflow is calculated again, this time using the output of the ‘fast 
simulation’ as input for the dynamic route cost calculation and the process is 
repeated. When  is converged the main simulation is continued with 
the last calculated inflow for time instant . 
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Pros and cons of the inner loop 

The runtime of a single full model run increases when the inner loop method is 
used. This is the result of the additional inner loops and the need for extra data 
handling. When a less complex propagation is used, the additional simulation 
time can be limited. Depending on the complexity of the route choice problem, 
it might be possible to find a solution faster using the inner loop method. This, 
however can not be proven mathematically. 
 

7.7.4 Determine route pattern for first iteration 
The route costs  are derived from the previous iteration. For the first 
iteration no dynamic costs can be calculated. Instead a static (stochastic 
equilibrium) assignment can be used to make a rough estimate of link flows. 
Other possibilities are using free flow conditions to predict travel costs for the 
route choice calculation or to use uniform probabilities. 

)(kcrod

 

7.8 Conclusion 

The literature only proposes route choice behaviour in two ways, of which both 
are considered unsuitable for all situations. More in particular an intermediate 
method is currently missing. Such a method is introduced, including a 
mathematical description. Also a solution scheme is presented that includes an 
inner loop structure for better estimating behavioural effects. 
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8 Case study  

8.1 Outline 

In the previous chapter method for combining route choice and dynamic 
network loading was presented. This chapter tries to test this method by using a 
simple case study for application of the method. 
 

8.1.1 Description 
The new approach described in the previous chapter is tested using a case 
study. A 25-zone network model (Zuid-Meerendal) is used with realistic travel 
demand.  

Figure 8.1 Network used for case study 

 
A 30 minute period is modelled with route choice intervals of 5 minutes. The 
aim of the case study is to optimise route choice for the interval ranging from 10 
to 15 minutes based on a 20 minutes horizon. The first two time intervals use 
uniform route choice (all routes for an OD-pair get assigned the same amount 
of demand), to represent non-optimal network conditions. The third interval 
uses the inner loop method described in the previous chapter. The 3 remaining 
intervals base route choice only on instantaneous travel cost. 

 0 5 10 15 20 25 30
 
 Uniform Dynamic Instantaneous

Figure 8.2 Types of route choice in the case study 
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8.1.2 Expectations 
Because the first and second interval use uniform route choice, early departs 
result in a fixed load on the network. Traffic departing during the objective 
interval will optimise their route choice subject to this fixed load and subject to 
interacting traffic departing in later intervals. The objective interval traffic will 
approach an equilibrium. 
 

8.2 Approach 

A prototype model framework including the route choice, route cost calculation 
and flow propagation was built in Ruby and implemented in the OmniTRANS 
model environment. Route choice is performed with the PCL model. 
 

8.2.1 Scenarios 
The model takes a long time to run: 1 iteration including route cost calculation, 
route choice calculation and propagation of traffic takes about 45 minutes. 
Because of limited time, only a few scenarios have been used for model testing.  
 
Scenario dimensions 

Each scenario is based on four dimensions: 
• Spread parameter µ  
• Calculation of α  between iterations 
• Number of iterations 
• Definition of initial route probabilities 
 
Spread parameter 

The parameter used for the spread in the Probit simulation model has to be 
chosen in such a way that it suits the order of magnitude of the cost attribute. 
Because of the exponential function in the choice model, a wrong value for µ  
might lead to full deterministic or full stochastic probabilities. For calibration 
purposes it is good to ensure a good value for µ  is necessary. In this case study 
two values are used for testing. The value 0f -0.008 is used for a deterministic 
simulation. The value of -0.00002 is used to try more stochastic simulations. 
 
Calculation of α  

As described in paragraph 7.7.2, the optimal value of α  for combining two 
successive iterations is unknown. Two types are used7.7. The ‘MSA’ type refers 
to successive averages in which α  is given by 
 

ii
1

=α  (8.1) 

 
The ‘Replace’-method is based on a fixed value of 1.0 for α  in each iteration. 
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Number of iterations 

The number of iterations used in the scenarios is depending on the value of 
each scenario. A large number of iterations is used for modelling important 
scenarios. A lower number is used for some additional analysis. 
 
Definition of initial probabilities 

For the first iteration no prior route costs are available. Two options are 
available. The first option is to use instantaneous free flow travel costs. The 
second option (uniform spread) is to use a uniform probability spread.  
 
Scenario overview 

Table 8.1 gives an outline of the used parameters sets.  
 

Scenario Choice model µ  Iteration 
method 

# iterations First iteration 
choices 

1 -0.008 Replace 

2 -0.008 MSA 
15 

3 -0.00002 Replace 

4 

PCL 

-0.00002 MSA 
10 

Uniform spread 

Table 8.1 Scenarios used for case study 

 

8.3 Results 

The results of the scenario runs are displayed in appendix D. For each scenario a 
graph is presented that shows the duality gap per departure interval over the 
iterations.  
 

8.3.1 Comparison of scenarios by spread parameter 
The first two scenarios differ from the second two in terms of the used spread 
parameter. As expected, the lower (absolute) value of µ leads to a more 
stochastic situation in which less iterations are needed and the model 
converges faster, but keeps a higher duality gap.  
 

8.3.2 Comparison of scenarios by iteration method 
The iteration method definitely influences the result of the test scenarios. For 
the replace method, the converge rate is fast in the first 5 iterations. Then an 
oscillating effect occurs and no further convergence is reached. The method of 
successive averages however converges in about 5 iteration and then reaches a 
stable state without oscillating.  
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8.3.3 Duality gap of different intervals 
All scenarios show a reduction in the duality gap for all departure intervals, even 
those for which the route choice fractions are fixed. For the deterministic 
scenarios the duality gap of the objective interval is optimised to have the 
lowest value of all duality gaps. In the more stochastic scenarios the objective 
interval can not be optimised to such a level.  
 

8.4 Discussion 

It was possible to test only a limited number of scenarios. The results from those 
tests however indicate that the proposed limited forecasting method leads to 
expected results: the duality gap converges to a stable state. For the test 
scenarios only a few iterations were enough to give good indications of the final 
solution. 
 
The two proposed methods for combining iterations both work. However, the 
method of successive averages gives significant better results than the replace-
method. The latter tends to oscillate, while the former really converges to a 
stable situation. Further, the MSA approach converges faster and to a lower 
value of the duality gap. 
 
The influence of the spread parameter µ  is like expected. Deterministic models 
lead to a lower duality gap than stochastic models. 
 

8.5 Value of case study 

The case study presented here uses only a small network and the approach used 
does not include congestion. Although the results from the case study are 
hopeful, it should be noted that they do not imply that the approach is 
successful for large scale networks and/or congested networks. Further analysis 
is needed to see if larger models and time instances further ahead in time 
(when the load on the network becomes larger) show comparable results. 

8.6 Conclusion 

Tests have been performed on a small model network with a limited time (and 
thereby limited network load). Four scenarios have been run to see how the 
iterative procedure of route choice and network loading leads to a stable 
situation. Results indicate that all parameters influence the result as expected 
beforehand. Additional (large scale) research is needed to see how well the used 
approach performs on large scale (and loaded) networks.  
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9 Conclusions 

9.1 Brief summary 

Research objective 

In the first chapter the objective of this research was formulated as follows and 
was supported by four research questions. 
 

“The aim of the study is to develop a route choice model as an extension for current 
macroscopic DNL models, taking into account the interdependence of route choice 
and network loading.” 

 
Summary 

A framework was developed wherein existing DNL models can be used for traffic 
flow propagation, while the framework has a route choice model and uses an 
iterative approach with sequential route cost calculation, convergence check, 
route choice and dynamic network loading. 
 
The route choice problem is presented as discrete choice problem. Five route 
choice models mentioned in the literature (MNL, CNL, PCL, PSL and C-Logit) 
have been theoretically described. A large scale network is used to generated 
routesets for a sample of origins and destinations (26 x 26 zones). From the 
literature a probit simulation technique is adopted and implemented in Matlab.  
 
Route choice probabilities are estimated for all routes (2148 in total, of which 
2010 significant), based on an arbitrary spread parameter. The Logit-based 
route choice models are then calibrated against a random sample of routesets 
and validated against all routesets (538 relevant sets in total). The validation 
process included an analysis of the model performance to characteristic of the 
routeset. From this analysis the PCL model is chosen as applicable for model 
use. 
 
Interaction between route choice and dynamic network loading has been 
investigated. A model is made for combining this model components. This 
model uses a new dynamic equilibrium definition, since the existing definitions  
(DUE and Boston equilibrium) were too rigid and not applicable for all model 
purposes. 
 
The framework  is implemented in the OmniTRANS environment and linked to 
Ruby scripting. Needed import and export to Matlab have been developed. A 
case study has been performed to test how well the proposed framework 
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performs. Apart from the long model run time the results were promising: all 
model parameters seem to have the planned effects. Further the new 
equilibrium method leads to stable conditions. 
 

9.2 Conclusions 

Main advances on the research of route choice models 

a) In the literature route choice models are approached on a very theoretic 
base. This research is one of the few in which the models have been 
applied on a large scale realistic network. It turns out that the models are 
applicable in such situations and are preferred above on-the-fly path 
searching from a computational point of view. 

b) Five GEV models (MNL, CNL, PCL, PSL and C-Logit) can to some degree be 
calibrated on the level of a small network. This means that no estimation 
process on OD-pair level is needed. However, it turns out that the model 
performance after calibration depends on the characteristics of the 
routeset for which the model is applied. There are strong relationships 
between overlap, route costs and model performance. 

Main advances for dynamic traffic modelling 

 
c) It is possible to extend existing dynamic network loading models with 

route generation, filtering and route choice without too many 
adjustments. A framework is proposed that can be used as a starting point 
for this adjustment process. 

d) The existing dynamic traffic equilibria can be replaced by one single 
flexible dynamic traffic equilibrium. This model allows to represent 
traveller behaviour in a more realistic way then the current models, 
because it allows ‘intermediate’ equilibria (between instantaneous 
equilibrium and full dynamic equilibrium). As far as known, such an 
equilibrium is not mentioned in the literature before.  

e) The new equilibrium is equipped with a mathematical formulation and 
solution scheme. The solution algorithm uses a double loop structure for 
better representation of travel behaviour. A case study with this model 
indicates that the results are promising if the parameters suit the model 
application. 
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9.3 Further research 

During the research the following issues have been identified for further 
research. 
 
f) Departure time modelling is currently not part of the framework. Research 

can be done to see if the framework can be altered to support departure 
time choice modelling. Including this functionality would further improve 
the power of the DTA framework as modelling tool. 

g) An empirical research can be conducted to see to what extent route choice 
in real life follows the limited forecasting approach. This requires data on 
followed routes and – if possible – decisions made during trip making. 
Ideally would be to see what route travellers tend to follow while making 
the trip. 

h) Additional tests on larger routesets are needed to see to what extent 
routeset characteristics determine what route choice model is best to use. 

i) Additional simulations are needed to see how well the inner loop method 
performs on congested networks and with varying forecasting horizons. 
Especially the overall converge rate and final solution (in terms of duality 
gap size) are interesting issues subject to parameters like forecasting 
horizon, number of inner loops and route choice interval. 

j) The model functionality of the proportionality factor for modelling 
multiple types of traveller behaviour and cost perception has to be further 
investigated. It is believed that the proposed method introduces flexibility 
and better fit to real world data, but at the same time might lead to an 
increase of model complexity. 

k) One final main issue for further research is the possibility to model 
adaptive route choice. The introduction of subroutes is likely to require a 
modification of routeset generation, routeset filtering and the route choice 
module. It might however lead to significant improvement of the model. 
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Appendix A Conceptual framework diagram 

Figure A.1 Conceptual framework 

The indices indicate for which dimensions the action has to be performed or 
data is specified. The thick outlined blocks are covered in this research. Thick 
arrows indicate the main model data flow. 

 

This page can be folded out for viewing while reading. The 
figure depicts the framework introduced in chapter 3 and of 
which elements are covered in the chapter 4, 5, 6, 7 and 8. 
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Appendix B Input parameters routeset generation and filtering 

Zones used for routeset generation 
 
 
 
_
_ 
 
 
 
 
 
 
 
Map of network and zones 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number Description Number Description Number Description 

88 Groningen 1320 Lelystad 2668 Den Haag 

234 Delfzijl 1372 Garderen 2820 Rotterdam 

282 Dwingeloo 1473 Nijmegen 3074 Middelburg 

391 Sneek 1539 Alphen (Gld) 3376 Tilburg 

627 Lauwersoog 2054 Amsterdam 3683 Asten 

732 Bourtange 2149 Marken 3868 Maastricht 

785 Hoogeveen 2373 Den Helder 4056 Tweede Maasvlakte 

979 Deventer 2388 Alkmaar 4075 Amersfoort Vathorst 

1023 Enschede 2616 Boskoop   
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Generation parameters 
Initial variance for randomisation 0.09 
Increase of variance 0.02 
Maximum variance 0.30 
Number of unsuccessful iterations before increasing variance 3 
Maximum number of iterations 50 
 
Filtering parameters 
α Maximum overall detour 1.90 
∆ Maximum overlap 0.60 
ωmax  Maximum section detour 2.00 
ωmin  Minimal section detour 0.01 
S Maximum size of choiceset 6 
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Appendix C Network used for case study (chapter 8) 

Network overview “Zuid-Meerendal” 
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Appendix D Results case study 

Scenario 1 

Spread parameter 008.0−=µ  
Route choice update strategy: replace 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scenario 2 

Spread parameter 008.0−=µ  
Route choice update strategy: MSA 
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Scenario 3 

Spread parameter 00002.0−=µ  
Route choice update strategy: replace 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scenario 4 

Spread parameter 00002.0−=µ  
Route choice update strategy: MSA 
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